Getting this error while using rag application

WARNING Could not run function search_knowledge_base(query=credit card welcome kit contents)
ERROR Retriever is not of type BaseRetriever: (VectorStoreRetriever(tags=[‘QdrantVectorStore’, ‘HuggingFaceEmbeddings’], vectorstore=<langchain_qdrant.qdrant.QdrantVectorStore object
at 0x7612692384c0>, search_kwargs={‘k’: 4, ‘filter’: Filter(should=None, min_should=None, must=[FieldCondition(key=‘metadata.language’, match=MatchValue(value=‘english’),
range=None, geo_bounding_box=None, geo_radius=None, geo_polygon=None, values_count=None)], must_not=None)}),)
Traceback (most recent call last):
File “/home/sai-chand/miniconda3/envs/llm/lib/python3.10/site-packages/phi/tools/function.py”, line 319, in execute
self.result = self.function.entrypoint(**entrypoint_args, **self.arguments)
File “/home/sai-chand/miniconda3/envs/llm/lib/python3.10/site-packages/pydantic/_internal/_validate_call.py”, line 38, in wrapper_function
return wrapper(*args, **kwargs)
File “/home/sai-chand/miniconda3/envs/llm/lib/python3.10/site-packages/pydantic/_internal/_validate_call.py”, line 111, in call
res = self.pydantic_validator.validate_python(pydantic_core.ArgsKwargs(args, kwargs))
File “/home/sai-chand/miniconda3/envs/llm/lib/python3.10/site-packages/phi/agent/agent.py”, line 2575, in search_knowledge_base
docs_from_knowledge = self.get_relevant_docs_from_knowledge(query=query)
File “/home/sai-chand/miniconda3/envs/llm/lib/python3.10/site-packages/phi/agent/agent.py”, line 1088, in get_relevant_docs_from_knowledge
relevant_docs: List[Document] = self.knowledge.search(query=query, num_documents=num_documents, **kwargs)
File “/home/sai-chand/miniconda3/envs/llm/lib/python3.10/site-packages/phi/knowledge/langchain.py”, line 42, in search
raise ValueError(f"Retriever is not of type BaseRetriever: {self.retriever}")
ValueError: Retriever is not of type BaseRetriever: (VectorStoreRetriever(tags=[‘QdrantVectorStore’, ‘HuggingFaceEmbeddings’],
vectorstore=<langchain_qdrant.qdrant.QdrantVectorStore object at 0x7612692384c0>, search_kwargs={‘k’: 4, ‘filter’: Filter(should=None, min_should=None,
must=[FieldCondition(key=‘metadata.language’, match=MatchValue(value=‘english’), range=None, geo_bounding_box=None, geo_radius=None, geo_polygon=None, values_count=None)],
must_not=None)}),)

i have a retriver as
retriever= db.as_retriever(
search_kwargs={
“k”: TARGET_SOURCE_CHUNKS,
“filter”: qdrant_models.Filter(
must=[
qdrant_models.FieldCondition(
key=“metadata.language”,
match=qdrant_models.MatchValue(value=language),
)
]
),
}
),

-*- Create a knowledge base from the vector store

knowledge_base = LangChainKnowledgeBase(retriever=retriever)

Hi @saichand
Thank you for reaching out and using Phidata! I’ve tagged the relevant engineers to assist you with your query. We aim to respond within 48 hours.
If this is urgent, please feel free to let us know, and we’ll do our best to prioritize it.
Thanks for your patience!

@saichand I don’t suggest using the Langchain knowledge base if you are looking for seamless integration. We have in-built knowledge bases that will help you build better